
Neural Networks from Scratch (without linear alge-
bra)
Lasse Hansen

April 27, 2021

Neural networks (NNs) are all the rage right now and can seem kind
of magical at times. In reality, most NNs are essentially just a bunch
of logistic regressions1 stacked on top of each other + a clever way 1 Depending on activation function

of distributing blame for the predictions and updating the weights
accordingly. In this handout, we will break NNs down step-by-step
to hopefully de-mystify. There are exercises along the way, but I
suggest reading through the whole document before doing them to
have a better understanding of the big picture.

I have tried to minimize the math and keep linear algebra out of
the way. Implementations of neural networks in libraries such as
torch, keras/tensorflow etc. use matrix multiplications and other
linear algebra instead of what I’ll show you here2. The reason for 2 Along with a whole bunch of other

optimization.doing it this way, is that it, at least for me, is far more intuitive to see
what happens at each individual node. Once you understand this,
understanding how it’s done with linear algebra is not as daunting.

Let’s begin our journey by understanding activation functions.

Activation functions

Consider a standard feedforward neural network (aka multilayer
perceptron)

This network takes 3 inputs (a row of 3 variables/columns in your
data), has 4 hidden nodes, and a single output node which means it
will output a single number. For regression and binary classification
you use a single output node, and for multiclass classification you
use an output node per group.

Upon creation of the network, all weights between the nodes
(i.e. the links/lines in the image) are initiated with a random value3. 3 Not always the case, some of the more

advanced NNs require sophisticated
initialization schemes.

When the networks get an input of training examples, the inputs are
multiplied by the weights and fed to the next layer of nodes. In our
case, each node in the hidden layer receives an input which is a vec-
tor of 3 elements: the input times the weight from each input node
to the hidden node. Before the hidden node can propagate the signal
forward, it has to aggregate it to a single number with a non-linear
function.4 This is where the activation function comes in. 4 This is crucial and what makes NN

universal function approximators.Nowadays, ReLU (and its variants) is the most common activation
function, but sigmoid is the OG. The equations are as follows:

neural networks from scratch (without linear algebra) 2

Figure 1: Figure 1: Standard MLP

ReLU = max(0, input)

sigmoid =
1

1 + e−input

The input in the above equations refers to the net input to the nodes,
i.e. the weighted sum of all inputs. All the activation function does,
is apply some function to the net input. This becomes the node’s acti-
vation and is what is fed to the next layer of nodes in the network in
exactly the same manner as from the input to the first hidden layer.

Let’s see a quick example of how to calculate activation for a single
hidden node with 3 input nodes. Let’s assume this is the top hidden
node in Figure 1, h1.

Assume we get an input of (1, 3, 5) in

x1, x2, x3 respectively

input_nodes <- c(1, 3, 5)

these are weights coming into h1

first element from x1, second from x2 etc

weights_i_h1 <- c(0.5, 1.2, -0.3)

(weighted_input <- input_nodes * weights_i_h1)

[1] 0.5 3.6 -1.5

(net_input <- sum(weighted_input))

neural networks from scratch (without linear algebra) 3

[1] 2.6

Define our activation functions

sigmoid <- function(x) 1 / (1+ exp(-x))

relu <- function(x) max(0, x)

Calculate activations

Note: each node only has 1 activation function.

I showed both here to illustrate the difference between them

(h1_activation <- sigmoid(net_input))

[1] 0.9308616

relu(net_input)

[1] 2.6

Visually, this is what’s happening.

Figure 2: Figure 2: Activation function

Repeat the process for all the nodes in the network and voíla - you
just implemented the forward pass of a neural network!5 5 Different nodes can have different

activation functions. For instance,
input nodes always use the identity
function (i.e., no transformation is
done). Hidden nodes are usually some
variant of ReLU. The activation function
of the output node(s) depends on the
task. Doing regression? The identity
function would make sense. Doing
binary classification? A sigmoid would
be a good choice (as the values are
squished to the range 0-1).

Notice how similar this is to logistic regression: You have a bunch
of input nodes/variables, which have an associated weight (betas),
which are combined using the sigmoid (aka logistic) function.

Note: each node also has a bias which is an extra trainable parameter
(essentially an intercept). For simplicity we assume it to be zero here.

neural networks from scratch (without linear algebra) 4

Exercise

• Implement the entire forward pass for the neural network in the
image. (3 input nodes, 4 hidden nodes, 1 output node). Randomly
initialize the weights and use [1, 3, 5] as the input nodes. Feel free
to use either Python or R.

Gradient descent

Hurray, the forward pass is done! The network is just making ran-
dom predictions for now though, so we need to give it a way to learn.
This is where backpropagation and gradient descent comes in. Now,
as with any regression model, we need to define some loss function,
i.e. how we calculate the “goodness” of the model. The loss function
to use depends on the problem at hand, but a common one for re-
gression is sum of squares errors. The equation is very straightforward
and looks like this:

SSE =
n

∑
i=1

(y − ŷ)2

Where y is the label and ŷ your prediction. The greater the distance
your prediction is from the target, the larger the SSE is. Therefore, we
want to minimize this.

From high school calculus, you might recall that the derivative of a
function is simply the slope of the function. 6 6 Figure taken from

https://towardsdatascience.com/

how-to-build-your-own-neural-network-from-scratch-in-python-68998a08e4f6
Figure 3: Figure 3: Loss landscape

The plot above is an illustration of the loss (e.g. the SSE) given
different combinations of weights between nodes.7 As the image 7 This is a simplification, as in reality

the weight space is highly multidimen-
sional. To develop an intuition however,
this is a useful way to look at it.

illustrates, if we are unlucky we can get stuck in local minima, i.e. an
area where the gradient is zero, but that is not the global minimum,

https://towardsdatascience.com/how-to-build-your-own-neural-network-from-scratch-in-python-68998a08e4f6
https://towardsdatascience.com/how-to-build-your-own-neural-network-from-scratch-in-python-68998a08e4f6

neural networks from scratch (without linear algebra) 5

i.e. the combination of weights with the lowest possible loss. This is
just a fact of life for neural networks - you are in no way guaranteed
to find the optimal solution. Different weight initializations will lead
you to find different minima, which can vary substantially.

Anyhow, the way we minimize the loss is to calculate the gradient
of the loss function in our current state and make changes to our
weights based on this. The sign (+ or -) of the gradient tells us which
direction to go, and the magnitude tells us how large steps to take.
In essence, we start at some random point on the graph above, and
slowly make our way down, until we hopefully end at the green dot.

The procedure differs slightly if the node is an output or hidden
node. Let’s go through it for output nodes first.

In our case, we had a single output node, so let’s assume we’re
doing binary classification (is it a 0 or a 1?).8 For binary classification, 8 You would also use 1 output node

for regression, but use e.g. the identity
function as activation function for the
output node instead. Normally, you
would use a different loss function for
binary classification, but let’s stick to
SSE for simplicity.

it makes sense to use the sigmoid as activation function for our out-
put, as it squishes the values to a range between 0 and 1. To calculate
the derivative of the loss function with respect to the weights (and
biases), δ, we need to use the chain rule which eventually gives us
this9: 9 I skipped a lot of math here. You

don’t need to understand exactly how
this is derived to understand neural
networks, but feel free to read up on it
if so inclined.

δ = the derivative of the loss function·
the derivative of the activation function

Using SSE and sigmoid activation function we get this:

δ = 2(y − ŷ) · a(1 − a)

Where a is the node’s activation, i.e. the value we get after using
the activation function (sigmoid) on the sum of the weighted input.

Let’s see an example calculation.

assume the true label of the target is 1

label <- 1

assume that the activation of the output

node (after the entire forward pass) is 0.6

output_node_activation <- 0.6

Derivative of the sigmoid function:

sigmoid_derivative <- function(x) x*(1-x)

(delta_o <- 2*(label - output_node_activation) *
sigmoid_derivative(output_node_activation))

[1] 0.192

Visually, this is what’s happening.

neural networks from scratch (without linear algebra) 6

Figure 4: Figure 4: Calculation of δ of
the output node

Easy! Notice that the value of δ is positive. This is because our pre-
diction (0.6) was below the label (1) and we should therefore increase
the weights to get closer to the correct prediction. Had the label been
0 instead, δ would have been a negative number. Essentially, δ tells
us how we should make changes to our weights to get closer to the
optimal state as defined by the loss function.10 10 See Figure 3.

The clever thing about backpropagation is that weights are up-
dated based on their magnitude. That is, if the error is large, large
activations will change more than small activations, as they “con-
tribute” more to the prediction than the smaller ones. As the name
implies, the errors are propagated back into the network (what is
known as the backward pass). Calculating δ for the hidden layer is
the first step in this process.

Exercise

• Change the value of the output_node_activation and see how the
delta changes. What do you expect happens as it gets closer to the
label?

• What do you think the derivative of the ReLU function is? Plot the
ReLu function, implement its derivative function, and try using it
instead of the sigmoid.

• Use the value for the output_node_activation that you calculated
in the first exercise (the forward pass).

Now, to distribute blame for the prediction.

neural networks from scratch (without linear algebra) 7

Backpropagation

As mentioned, backpropagation works a bit differently whether
you’re calculating weights coming in to an output or a hidden node.
For weights coming in to the output nodes, the weight changes are
proportional to the learning rate η, the activation of the predecessor
node, and the δ we just calculated. To continue with our example
from Figure 1, let’s calculate the weight changes for the weight going
from the top hidden node h1 to the output ŷ1.11 11 Learning rates are a pretty big deal.

Many different optimizers exist (you’ve
probably heard of ADAM or RMSProp),
which use clever ways of adapting the
learning rate (among other things).

Assume a random weight

from h1 to yhat (calling yhat 'o' for output)

weight_h1_o <- c(0.8)

To calculate the weight change we need:

1) the activation of the input unit

which in this case is h1

2) the delta of the output unit

3) a learning rate (alpha)

Learning rates differ a lot

but let's go with 0.01

alpha <- 0.01

plugging numbers into the equation

(weight_change <- alpha * delta_o * h1_activation)

[1] 0.001787254

update weight

(weight_h1_o <- weight_h1_o + weight_change)

[1] 0.8017873

Pretty easy right? To calculate the weight change for weights going
into hidden units, we simply multiply the learning rate, α with the δ

(the derivative of the loss function with respect to the weights) and
the activation at the preceeding node.

weight change = α · δ · activation

Exercise

• How does the learning rate impact the weight change?
• Calculate the weight changes for all the weights going from the

hidden nodes to the output node. Use the weights c(0.8, -1.2,

0.5, -0.3) for h1, h2, h3, h4 respectively.

neural networks from scratch (without linear algebra) 8

Figure 5: Figure 5: Weight updating

We’re getting really close to having trained our little NN on a sin-
gle example. All that’s left is calculating the weight changes for the
weights from the input nodes to the hidden nodes. Fortunately, the
procedure is largely the same as for the output units.

First, we calculate δ for the specific weight and node again. How-
ever, since we are now in the hidden layer, we don’t have access to
the true label anymore. Instead, we use the δ from the succeeding
layer (the output node) multiplied by the weight from our hidden
node to the output!

To calculate δ for the hidden node, δh1 , we sum over all the δ ·
weight for the output node and multiply by the derivative of the
activation. In other words, we calculate delta_o_times_weight_h1 +

delta_o_times_weight_h2 + delta_o_times_weight_h3 + delta_o_times_weight_h4

and multiply by the derivative of the activation of h1. Let’s see an ex-
ample.

Using the weight we calculated before

and setting 3 random weights for h2_o, h3_o, h4_o

weights_h_o <- c(weight_h1_o, 0.5, 0.1, 0.6)

(delta_o_times_weights <- delta_o * weights_h_o)

[1] 0.1539432 0.0960000 0.0192000 0.1152000

(sum_delta_o_times_weights <- sum(delta_o_times_weights))

[1] 0.3843432

(delta_h1 <- sum_delta_o_times_weights *
sigmoid_derivative(h1_activation))

neural networks from scratch (without linear algebra) 9

[1] 0.02473567

Figure 6: Figure 6: Calculation of δh1

Notice that the value of δ is substantially smaller than what it was
at the output nodes. This means that the weight changes from the
input nodes to the hidden nodes will be even smaller. Deep networks
can run into the problem of vanishing gradients, i.e. δ becomes so
small that weight changes are negligible. ReLU is far more robust to
the problem of vanishing gradients than the sigmoid function, which
is one of the reasons for its success.

Alright, we’re getting reeally close now. The last step to update the
weights coming in to the hidden nodes is exactly the same as for the
weights coming in to the output node: α · δ · activation

We already defined our 3 input nodes and their weights going to
h1. Let’s update them.

(weight_change <- alpha * delta_h1 * input_nodes)

[1] 0.0002473567 0.0007420701 0.0012367836

(weights_i_h1 <- weights_i_h1 + weight_change)

[1] 0.5002474 1.2007421 -0.2987632

And we’re done! Rinse and repeat for the rest of the hidden nodes
and you just trained one step of a neural network! For a standard
feedforward neural network, this is all that is going on - just repeated
a lot of times.12 When this process has been conducted for each train- 12 This has gone through the most

basic/original formulation of a neural
network. Of course, many tricks have
been added, such as adding momentum
(weight changes are also proportional to
the magnitude of the previous weight
change), and perhaps more importantly
stochastic gradient descent. In essence,
stochastic gradient simply works in
batches of multiple inputs instead of
a single one. That is, weights changes
are not calculated for every single
training row, but is instead accumulated
over e.g. 48 rows before weights are
changed. See the Further Reading
section for more

neural networks from scratch (without linear algebra) 10

ing example, the neural network has gone through one epoch. You
usually stop training after a certain number of epochs, or once you
reach a stopping criterion.13 13 Could be a certain validation error

threshold or once the network converges,
i.e. reaches a stable state.

Doesn’t seem so magical anymore, right?

Exercise

• Calculate the weight changes for all the weights going from the
input nodes to the hidden nodes. You decide what the remaining
weights should be.

• Congratulations! You have now created and trained one step of a
simple neural network! All that’s left is looping over this for all
the training examples, and repeat until the network converges. Go
have a look through some of the code inspiration in the References
and further reading section to get a sense of how this can be done.

• I encourage you to take a stab at implementing your own neural
network (I suggest 1 or 2 hidden layers) that can take an arbitrary
number of input/hidden/output layers. Feel free to follow either
this or Nielsen’s way of going about it.

To sum up, here are the steps:

1. Initialize the network: Randomly initialize all the weights.

2. Forward pass: Pass an input to the neural network and propagate
the values forward. To calculate activation of the nodes, take the
weighted sum of their input and use an activation function such as
the sigmoid or ReLU.

3. Backward pass: Calculate the loss for your current training ex-
ample. Calculate δ for the output node(s) and update the weights
coming in to the output node(s) by multiplying δ with the learning
rate and the activation of the hidden node feeding into the output
node. Continue this process by propagating δ back into the hidden
layers and continually updating the weights.

4. Repeat: Repeat for a specific number of epochs or until some stop-
ping criterion is reached.

References and further reading

Code inspiration

I took an elective in Neural Networks a couple of years ago, where
part of the exam was to implement a NN from scratch. You can see
my code here. It’s implemented in much the same style as this doc-
ument, i.e. no linear algebra, but lots of for loops. After working

https://github.com/HLasse/COSC420/blob/847869534ba9fab809f2e09b363490a8d837bd37/MLP.py

neural networks from scratch (without linear algebra) 11

through the exercises in here, it will likely seem quite straightforward
to you.

Kenneth wrote an implementation based on Nielsen’s to do classi-
fication on the MNIST digits dataset. You can find it on Blackboard.

Online Courses

Fast.ai: Practical Deep Learning for Coders - A great and comprehen-
sive course on neural networks. You will learn to implement them
from scratch using pytorch and pick up tons of useful knowledge
along the way. In particular, check out the part on SGD in chapter 4

for a great introduction.
Deep Learning Specialization - A true classic, updated spring 2021

with Transformer models and other goodies.

Books

Kriesel, D. A Brief Introduction to Neural Networks. http://www.
dkriesel.com/en/science/neural_networks. - A quite nice book
on the fundamentals of neural networks. A bit old by now, but the
foundations are the same.

Nielsen, M. Neural Networks and Deep Learning. http://neuralnetworksanddeeplearning.
com

https://course.fast.ai
https://colab.research.google.com/github/fastai/fastbook/blob/master/04_mnist_basics.ipynb#scrollTo=GlKtKAI_VXT4
https://www.coursera.org/specializations/deep-learning
http://www.dkriesel.com/en/science/neural_networks
http://www.dkriesel.com/en/science/neural_networks
http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com

	References and further reading

